
NOTATION 

T, substrate temperature; T o, initial substrate temperature; r and z, radial and axial coordinates; t, time; Q, heat- 

radiation source power; ~., thermal conductivity; a, thermal diffusivity; r0, radius of the heat radiation beam; Jo and J1, 

Bessel functions of the zero and first order; ~, error integral; AT, excess temperature; Tst, stationary temperature; /3, local 

speed of response; rl/2, time required for reaching half of the maximum excess temperature; Cp, specific heat; p, density. 
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NUMERICAL METHOD FOR ANALYZING A STOCHASTIC 

STATIONARY HEAT-CONDUCTION EQUATION WITH 

RANDOM COEFFICIENTS 

A. G. Madera UDC 536.2(075) 

A numerical method is suggested for denning mathematical expectation./ields" and the variance of a stochastic 
temperature fieM which is described in the stationary case by a stochastic heat conduction equation and 

bounda O, conditions with random coefficients. Random co~fficients ~?f the stochastic mathematical model may 
obey arbitrary truncated distribution laws. An example of usbTg the developed method is" presented. 

Introduction. Real temperature distributions in real objects are stochastic. This tact is caused by the randomness of 
the parameters and characteristics determining a temperature field. Such parameters and characteristics as powers of sources 

and sinks of heat, thermal conductivity coefficients of a body, coefficients of heat transfer from a body surface into a 

medium, enviromnent temperature, gaps between contacting bodies, etc., may be random and have a significant statistical 

scatter. The stochasticity of these parameters and characteristics is a consequence of the random technological scatter and 

random fluctuations of the parameters characterizing heat transfer between the obiect and the medium. 

In engineering practice the temperature mathematical-expectation and temperatt~re variance fields are the most 

important probability characteristics of the stochastic temperature distribution in objects. Having available these probability 

characteristics, one can determine the fields of confidence intervals in the object. The real values of temperatures (which may 
t~ccur in practice) will be arranged inside these intervals. 

At present, there exist the following numerical methods tbr analyzing stc~chastic temperature fields in a body: 
perturbation theory methods [1]; the finite-element method for a differential equation with the coefficient of an unknown and 

the free term both being white Gaussian noise [2]; and the method of the stochastic Green's function [3, 4]. However, the 

perturbation theory methods are applicable only in the case when random fluctuatkms t~f the parameter are much smaller than 
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Fig. 1. Dimensionless distributions of the mathematical expectation 0,  the 

r.m.s, deviation o O and the upper 95% confidence boundary O c for the 

stochastic temperature field in a three-layer plate. 

its mathematical expectation value. In the finite-element method [2], one considers the equation with the zero first-order 

boundary condition and the deterministic coefficient of the second derivative. Besides, this method is developed for the 

randomnesses of the white Gaussian noise type, which fit the real randomnesses not always well. The method of the 

stochastic Green's fimction is used only when Green's function may be constructed analytically, i.e., t'br a very narrow class 

of problems. There are no effective numerical methods that we needed for the analysis of stochastic three-dimensional 

temperature fields in regions of complex form which are described by the stochastic heat conduction equation and arbitrary 

boundary conditions with random coefficients, obeying real distribution laws. 

In the present work we propose a numerical method for defining mathematical expectation and variance distributions 

of the stochastic temperature field in a body of any dimensionality which is described by the stochastic stationary heat 

conduction equation in terms of partial derivatives. All the coefficients that enter into the equation and into the boundary 

conditions are random and obey arbitrary, truncated distribution laws. The probability characteristics of the stochastic 

temperature field are derived in an analytical matrix tbrm. The method is based on an application of technique [5] developed 

by the authors to a system of stochastic matrix equations that were obtained after approximating an operator in partial 

derivatives and boundary conditions by their difference analog. The error of the method is evaluated by the difference 

approximation error of the equations of the mathematical model and the discretization region. 

Stochastic Mathematical Model. The mathematical model describing the stochastic stationary temperature distribution 

u(x, o~) in the three-dimensional region D from R 3 with the boundary aD takes on the form 

V "(;~ (x, co) VU (x, co)) + ~ (x, ~o) = 0, (x, co) E D x ~,  (1) 

with boundary conditions on 0D of one of the three formS: 

u (x, o~) -= [1 (x, ~o), (x, ~o) ~ 0D x ~), (2) 

;~ (x, 0~) Ou (x, o~) .... [~ (x, co), (x, ~o) E OD x ~ ,  
On (3) 

L(x, co) a~L(x, o}) +o:(x, co)(u(x, o~)--fa(x, co))=[2(x, oJ), (x, o~)COD• Q~, (4) 
On 

where x = (Xl, x2, x3)ED; X(x, w)>0,  f(x, w), fi(x, w), i = 1, 2, 3, and c~(x, w)>0 are assigned functions of xEI3 = D 

+ 3D which for each xEI3 are random independent quantities. 
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In real bodies and in their systems the enumerated random functions at any x E 13 and co E fl vary within limited ranges. 

Therefore, their probability densities are truncated, i .e. ,  continuous within the intervals of  variation of random functions and 

equal to zero outside these intervals. 

The random functions that enter into the mathematical model simulate: fix, w) - the volumetric distributed heat source 

with a random volumetric power density; f~(x, o0 - the random temperature prescribed at the region boundary 0D; f2(x, w) - 

the random surface power density at the region boundary; f3(x, o~) - the random value o f  the surrounding medium's 
temperature; and c~(x, o~) - the random coefficient o f  heat transfer from the body surface into the medium. 

Difference Approximat ion .  For definiteness and clarity of  formulation, we consider the difference approximation of 

the stochastic heat conduction equation (1) with boundary condition (2) in the two-dimensional rectangular region 13 = {0 _< 

x < 11 and 0 _< y _< /2}. Introduce into 13 a rectangular non-uniform grid with steps equal to hi x, i = 1, 2 . . . .  N + 1 along 

the x-axis andhj  y , j  = 1, 2 ... .  M + 1 along the y-axis. Nodes with numbers0 ,  N + 1, and M + 1 lie at the region 

boundary OD. 

The difference scheme tbr Eqs. (1) and (2), which is derived by the integro-interpolation method [6], is valid/ 'or  

each co E f /and  has the form 

5::u:__~.: - (5~: • 5~+~. ~ -- ~i.: + ~. :+J u:: + 5:.~. :u~_, ~. : + e::u~.:_~ § ~. :.~ui, :+~ + :~: := O, (5) 

H0](O)) = f l (X0,  YJ, 0)), UN:I, /"  (fD) = / I ( X N + I ,  .~j, <0), ] = 0, 1 . . . . .  M @ 1: (6) 

Uio(O~) = f l ( x i ,  Yo, oJ), U<M§ (co) == /r (Xi, g,~t§ ~o), i = O, 1 . . . .  , N + 1, 

where ui i = uij(w ) = u(xi, yj, co) is the stochastic temperature at the node i, j; 
Y 

) 

(7) 
x i = !  ~J/~. 1 

'2 '2 

:" = :~J (~ = (" i' : (x, ;, (o) ~x@. 
% _  • 'J /_ I__ 

2 '2 

After moving the known boundary values of  temperatures and free terms over to the right-hand side, one may write (5) in the 
form of  a system of stochastic linear algebraic equations 

R (~o) u (~, )  = - -  : ( ~ )  - -  m (o, ) ,  (8) 

where u(w) = (till ... UNl , u12 ... UN2 , , UlM ... tlNM )T is the stochastic vector of unknown temperatures at internal grid 

nodes; R(w) is the stochastic three-diagonal symmetric n x n matrix (n = NM) with the block structure: 

R (o)) = 

6z ~2 

8.H 

in which matrices 6 i = ~Si(w), i = 1, 2, ..., M are stochastic tri-diagonal symmetric matrices with the diagonal elements equal 

to --(C~ki + (~k+l.i + Ski + t:k,i+l), k = 1, 2, ..., N and with the elements that are symmetric relative to the diagonal equal 

to 3/i, / = 21 3 . . . . .  N; matrices e i = e(w), i = 1, 2 . . . . .  M are the stochastic diagonal ones with elements eki , k = 1, 2 . . . .  

N; and f(w) and ~(w) are stochastic dimensional vectors o f  length n consisting of heat powers at grid nodes and of the known 
temperatures at the region boundary, respectively. 

We represent the matrix R(w) and vectors f(w) and so(w) as: 

R (~o) = - -  A G  ((o) A �9 - -  - -  H (~.'), ( 9 )  
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(~o) : -  Af '  (~o), 

qo (~o) = - -  A6 (co) q/(to), 

where A is a deterministic rectangular n • m matrix (m = 2NM + N + M) with the block structure: 

(10) 

( l l )  

A = 

T - - E O  E -~ 

�9 . . . . . . .  .t,  
T - - E O  E I 

T - - E  E _ J  

T is a deterministic N • (N + 1) matrix of the form 

1 - - 1  

r ~ . . . . . . . . . .  

1 - - 1 0  

/_ 11_j 

Eisad iagona l  N x Nunit  matr ix ;0 is  a zeroN x (N + 1) matrix; G(w) i sa  stochastic diagonal m • m matrix witha 

block structure with element-matrices arranged along the diagonal in the following order: 51, el, 52, c 2 . . . . .  5M, CM, and 

~M +1; f'(6o) and ~o'(w) are stochastic m-dimensional vectors. 

In view of (9)-(11), the set of (8) will appear as follows 

H (to) u (to) =: Af '  (to) - -  AG (07) q/(co). (12) 

The elements gii(w) of the stochastic matrix G(r are assumed to be random quantities with different truncated distribution 

laws. The elements gii are statistically independent of each other and of the stochastic vectors f'(r and ~o'(o~). The vectors 

f'(r and ~o'(co) may be statistically dependent. Note that the condition [ gii -- gii [ /.gii < 1 (where gii = M{gii (~ is the 
mathematical expectation of the random quantity gii(w)) is always satisfied in practice. 

The difference approximation of the mathematical-model equations leads to matrix equation (8) with the symmetric 

matrix R irrespective of the dimensionality of the equations and of the region's form. A representation of the matrix R in the 

form of the product of three matrices (9), in the middle of which there is the diagonal matrix G, and of the vectors f and ~o 

in the form of (10) and (11) may always be realized. In this case, the diagonal matrix G contains elements determined in 

terms of the thermophysical parameters of the region and boundary conditions, while the matrix A consists of elements l, -1, 

and 0. The matrix structure A is determined by the problem's dimensionality and by the form of boundary conditions. It is 

easy to understand the existence of the representation (9) if we interpret the grid covering the region as a graph with vertices 

at grid nodes and with branches connecting these nodes, containing thermal resistances or conductances. Then, according to 

the matrix-topological theory of electrical circuits [7], it is always possible to number the nodes and branches of the graph so 

as to obtain the matrix representation of the system R in the form of (9). 
Determination of the Probability Characteristics. We determine the probability characteristics of stochastic 

temperatures at grid nodes, namely: the mathematical expectation vector 0 = M{u(w)} and the correlation matrix K = 

M{u(~)uT(~)}, where u(oJ) is calculated from Eq. (12): u(co) = H-l(o~){Af'(o~) - AG(~o)r M(') is the mathematical 

expectation operator. The covariance matrix C is predicted from the expresskm C = M{u~176 T} --- K - fifiT, and the 

vector of variances D = M{(u~162 u~ = u~ - g, of stochastic temperatures at the grid nodes is equal to the 

diagonal elements of matrix C. 
The stochastic matrix equation (12) with the stochastic matrix H(o~) = AG(co)A T was investigated in [5]. The reduced 

expressions in [5] for vector fi and matrix K of stochastic temperatures at the nodes of the equivalent electrical circuit are 
obtained under the assumption that M{(gii0)k(gjj0)/} are negligible for all i ~ j, k, l~2 ;  the comparison of u and K with the 

calculations, performed by the Monte-Carlo method, showed their good agreement. If we do not neglect the mutual moments 

of the quantities (gii0k), i = 1, 2 .... m, k -> 2, then the probability characteristics of the stochastic vector take on the form: 

for the numerical expectation vector 
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}7 = B ( ~  - -  WF) ( / '  - -  0 ~ ' )  - -  B~F ,7'; (~3) 

and for the correlation matrix 

K = ~ { 2 ,  - -  Z , ; W  - -  W F Z ,  - -  WZ2 - -  Z,SW + M { W-QW } } ~ ' ,  (14) 

where f '  = M{f'(~)}, gO'= M{~o'(o0)}, G = M{G(o0} ; 2; 1 = M{~p(c@pT(co)}, 2; 2 = M{r Z3 = M{~'(r176176 T, 

anti ~(w) = if(co) - (]so'(co) are deterministic matrices; W is a deterministic matrix which is equal to the mathematical 

expectation of the matrix stochastic series, i.e., ~," = M{G~ - G%o)FG~ + G~176 - ... }; 0 = F2;IF 
+ Z2 F + FZ-2 T + 7"3 is a deterministic symmetric m x m matrix; and B = (AGAT)-IA, F = ATB are deterministic n • m 

and m x m matrices, respectively. 

The matrix series W converges ahnost surely for It BG~ AT 11 < ~ and, as a ru~e, with a sufficient accuracy we can 

restrict overselves to terms of order not higher than (G~ 4. Then, taking into account the fact that 

M {GOFG o} = q M  {(G~ M {G~ -- Fd-'M {(G~ M {O~176176176 {(O~ '~} -F U-, 

where F d is a deterministic diagonal ~atrix formed from the elements t]i of matrix F; and 0 is a deterministic mxm matrix 

with the diagonal elements f i~ ~ fu2f;~M{(g~ ~} M{(g~~ i m k. and with the elements ca u = (f~a ~ + fJ~fu)M Ix 

{(gk~ we obtain 

w = - - F d W  ~ - -  8 ,  M {WT2W} - -  W2Q d + ? ~ ,  

where W1 is a diagonal deterministic matrix with the elemems 

- -  , c y O  

~r = M {(g~ (1 (f,eg~ff-')/(l -k [~,..,-)}; 

Wo is a diagonal deterministic matrix with the elements 

- -  0 ; 9  o 0 ~'2, .  = M { ( g . r  - 2 f .  (g.0,.)~ § 3/:,, (gi,-)'} 

"~3 is a deterministic m x m matrix with the diagonal elements VC3.kk and '~/3.~a, which are equal to: 

t ? z  ~ o - -  

~Tc, a.,,,~ = ~ (2/,.f.-q., + lkq. )  M {(gO )~} M {(go).._.}, i # /e ,  

- -  o - -  - -  - -  , - -  0 e 

~'3.~ = (3f/.q,,, + f,,,d,.q. + f,,d~#,, + f,.h~q,.~) M {(&~)-} .,v/{(g~,)2}; 

and QD is a deterministic diagonal m x m matrix with the elements ~i of matrix 0 .  

Example of the Application of the Method. Consider a stochastic one-dimensional stationary temperature field of 

a body consisting of three contacting plates l = l I + l 2 + 13 in length with different thermal conductivity coefficients and 

internal heat sources. The thermal conductivity coefficient for the midplate, X2(x , w), is a random function with M{X2 ~ (xi, 

w)X2~ i, ~)} = 0 for i ~ j and each x iE i0 ,  l,_1; Xo ~ =- Xo - Xo. For each xiE[0,  /-,], the thermal conductivities ~.~ i(~) 
obey truncated normal distribution laws. The internal heat source power in the midplate, t~(x, (w), is a random function with 

the mathematical expectation f2 anti variance D& and M{~2%i(~ [)f20(xi, 6o)} = 0 ~'~)r i ~ j and each x iE  [0, I2], f20 = f -  

f2- At the left boundary of the body, there occurs heat transfer with a medium which has temperature u a and the random heat 

transfer coefficient e~(w) obeying the uniform distribution law. The right boundary of the body is assigned the random 

temperature Ue(W ) with the mathematical expectation fie and variance Due. Such a problem arises when analyzing a composite 

rod, heat-insulated at the sides, and heated up by the electric current passing through it. If there is a statistical scatter in the 

second rod length, then this randomness may be sinmlated by random thermal conductivity k2(x, co) with deterministic rod 
length. 

The mathematical model takes on the tbrm 

~o~. 02,t (x, o9 fl = O, (x, o~) E (0, l~) x 9_, 

0 , &o (x. (,~) 
c)-~-v t ;'`~ (x. o9 " + / ~  (x. o.~) == 0. (x, o~) ~ 10, i~1 • o 

- 0 X  ~ ,  - - 1  
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~a (x, {o)C IO, la) x ~, 
a %  (x, ~}) 

+ P a = 0 ,  
Ox 2 

E1 
Ox 

- ~ ( , ~ ) ( .  ( x ,  ~o) - u~) ,  x = 0 ,  ~ q 9., 

Dividing the body under consideration into nine intervals in such a way that each nodal point is contained in one 
control volume (as is shown in Figure 1) and integrating the mathematical-model equations over each interval, we obtain their 
discrete analog. The difference approximation of these equations may be written down in the matrix form (12) 

H (o3) u (o~) = Aft  (o3) - -  AG (o)) q/(o3), 

where H(o~) is the stochastic matrix of the form: 

H (~) = 

I (  61 --61 
m ) ~  61-'~G --&_ 

-G G + 6a --63 
- -G  6a + 6,~ ({,)) 

f'(co) and ~'(w) are the stochastic vectors written as: 

6, ({o) + & ({,)) 
- -& (o~) 

--& ({,)) 
& (o)) + G 

- - 8  6 5,; 4- 8r I . 

I' ({o) = 

f~ (& - &) + f~ (o0 & + f~ (& --  &) 

h (& + 6~) + b. (~o) i~ + f~ (& - &) 
' h a ;  + l~ ((o) & + L~ (& - &) 
f~_ (,~)(& + A;) + f~ (l~ - &) 

/~ (& 4- A:) 
fak7 

0 

, ~ ' (o~)  = 

--- /X a - ]  

~ 
0 i 
0 i 
0 

0 
0 

,_2_ t~O~ (o0 

A is the matrix of the form: 

A = 

" 1  - - - -1  

1 --1 
1 ---1 

1 --1 
1 

t - - 1  
1 --1 

1 

G(co) is a stochastic diagonal matrix with the diagonal elements equal to o~(c~), X!/hi, k 1/h2, X t/h3, X2(co)/h4, X2(co)/h5, X3/h6, 
X3/hT, and >,3/h8. Defining matrices entering into (13) and (14), we obtain vectors of the mathematical expectations t1 and 
variances D of stochastic temperatures at nodes 1, 2 ..... 8 of the body. At node 9 the mathematical expectation of the 
stochastic temperature fi9 = fie and the variance of the stochastic temperature 19 = Due. 
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Figure 1 presents the calculations, performed by the suggested method, of dimensionless distributions of the 

mathematical expectation O, the r.m.s, deviation ao, and the upper boundary of the confidence interval O~ = fi + 1.96 ar for 
the confidence probability 0.95 of the stochastic dimensionless temperature distribution O(x, u) = (u(x, ~o)-u,)/tq. The 

dimensionless deterministic initial data have the following values: X1/X2 = 10, X3/~ = 37, l~/12 = 3, 13/12 = 4.5 fx/f2 = f3/f2 
= 1; and the probability characteristics of the random quantities or(co), k2(x, ~), f2(x, ~o), and u~(r have the following 

dimensionless values: dc/& = 0.8, dxz /~ ,~  ----- 0 . 8 ,  df 2 /?2 = 1.0, and du, /O c = 0.45, where dz = COma x - -  Wrnin is the 
scatter of the random quantity ~o. 

Conclusion. The proposed numerical method allows one to determine the mathematical expectations and variances of 
a stochastic temperature field described by a three-dimensional stochastic heat conduction equation and by the first-, second-, 

and third-kind boundary conditions with random coefficients. The region, tbr which the probability characteristics of the 

stochastic temperature field are to be defined, may be arbitrary. On the basis of the present method it is possible to develop 
computer codes for analyzing stochastic temperature fields of complex objects. 

NOTATION 

u(x, co), stochastic temperature field; f~, space of elementary events co; R(w), stochastic matrix of the system; G(w), 
stochastic diagonal matrix of the system parameters; A, matrix of incidences; t], vector of mathematical expectations; K, C, 
correlation and covariance matrices. 
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